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Abstract

The simplest nontrivial toy model of a classical SU(3) lattice gauge theory is studied in the Hamiltonian approach. By means
of singular symplectic reduction, the reduced phase space is constructed. Two equivalent descriptions of this space in terms of a
symplectic covering as well as in terms of invariants are derived.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the study of quantum gauge theory by nonperturbative methods there exist, in effect, two approaches: one
is quantizing the unreduced system and then reducing the symmetries on the quantum level; the other one is first
reducing the symmetries on the classical level and then quantizing the reduced system. For a discussion of the first
strategy within the framework of lattice gauge theory, see [10,11] and the references therein. The aim of the present
paper is to contribute to the second approach. The motivation behind stems from the well-known fact that nonabelian
gauge fields can have several symmetry types, which give rise to singularities in the ‘true’ (i.e., reduced) classical
configuration space. Speaking mathematically, the latter is a stratified space rather than a smooth manifold. It is
natural to ask whether the singularities produce physical effects. For a systematic study of this open problem one
needs a concept of how to implement the singularity structure in quantum theory. Such concepts have been developed
in recent years; see, e.g., [6,7,12]. To separate the problem of symmetry reduction from the usual problems of a field
theory related to the infinite number of degrees of freedom, it is reasonable to first study lattice gauge theory. In this
way, one obtains a variety of toy models for forming and testing concepts and for developing quantum theory on a
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space with singularities. It is important for quantum theory, as well as interesting in its own right, to understand the
classical dynamics of these models. Thus, in the present paper we consider the simplest nontrivial model of an SU(3)
lattice gauge theory, where the lattice consists of a single plaquette. We study the kinematics of this model, i.e., the
structure of the reduced phase space. The classical dynamics will then be studied in a subsequent paper.

We proceed as follows. In Section 2 we introduce the model. In Section 3 we carry out symmetry reduction. This
will lead us to the so-called reduced cotangent bundle [13]. Then we give two equivalent descriptions of this bundle.
One is in terms of a symplectic covering (Section 4), the other one is in terms of invariants (Section 5). We conclude
with some general remarks on the dynamics in Section 6.

2. The model

Let us consider chromodynamics on a finite regular cubic lattice Λ. Denote the set of the i-dimensional elements of
Λ by Λi (sites, links, plaquettes and cubes in increasing order of i). For neighbouring sites x, y, let (x, y) denote the
link with orientation from x to y. Assume that we have chosen one orientation for each link. This means in particular
that if (x, y) belongs to Λ1 then (y, x) does not. For the effect of a change of the chosen link orientation on the
description of gauge fields see Remark 2.1.

The gauge group is G = SU(3), its Lie algebra is g = su(3). The classical gluonic potential is approximated by its
parallel transporter:

Λ1
3 (x, y) 7→ a(x,y) ∈ G.

Thus, the unreduced classical configuration space is the direct product GΛ1
and the unreduced phase space is T∗GΛ1

.
By means of the natural isomorphisms T∗GΛ1

∼= (T∗G)Λ
1
, T∗G ∼= G × g∗ and g∗ ∼= g, see below for details, the

canonically conjugate momenta (colour electric fields) are given by maps

Λ1
3 (x, y) 7→ A(x,y) ∈ g.

Local gauge transformations are approximated by maps

Λ0
3 x 7→ gx ∈ G,

and hence the group of local gauge transformations is the direct product GΛ0
. It acts on the phase space as follows:

a′

(x,y) = gx · a(x,y) · g−1
y , A′

(x,y) = gx · A(x,y) · g−1
x .

Remark 2.1. When reversing the orientation, the parallel transporter a is inverted and the associated momentum A,
roughly, gets a minus sign. However, for A the situation is actually more delicate, as it is ‘sitting’ on the starting site
of the link. This is a remnant of the approximation of classical fields we have chosen here. Since this is not relevant
for the rest of the paper, for details we refer the reader to [11].

The (gauge invariant) Hamiltonian is given by

H = −
δ3

2

∑
(x,y)∈Λ1

tr(A2
(x,y))+

1
2g2δ

∑
p∈Λ2

(6 − tr(ap + aĎ
p)). (1)

Here, δ and g denote the lattice spacing and the coupling constant, respectively, and ap is the parallel transporter
around the plaquette p. For a plaquette p with vertices x, y, z, u we choose

ap = axy · ayz · azu · aux .

While ap depends on the choice of a base point x , tr(ap) does not.
In the present paper we consider the case where Λ consists of a single plaquette. This is the simplest nontrivial

model for a Hamiltonian lattice gauge theory. On three of the links of the plaquette, a and A can be gauged to 1
and 0, respectively. Such a gauge is called a tree gauge. Then the residual gauge freedom consists of constant gauge
transformations. Thus, the unreduced configuration space is the group manifold G and the unreduced phase space is
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T∗G ∼= G × g. Its elements will be denoted by (a, A). The gauge group is G; its action on the phase space is given by
diagonal conjugation

a′
= gag−1, A′

= g Ag−1.

The Hamiltonian becomes

H = −
δ3

2
tr(A2)+

1
2g2δ

(6 − tr(a + aĎ)). (2)

Next, we will carry out symmetry reduction. The basic object for this is the G-manifold of the unreduced
configuration space, because it determines the kinematical structure of the model completely.

3. Symmetry reduction

First, let us recall the general procedure. It is known as cotangent bundle reduction and is a special case of (singular)
Marsden–Weinstein reduction.

3.1. Cotangent bundle reduction

Let Q be a manifold acted upon properly by a Lie group K (we may even assume that K is compact). Let k denote
the Lie algebra of K . Associated with (Q, K ) there is the surjection

π : T∗(Q/K ) → Q/K . (3)

The base space Q/K consists of the K -orbits in Q, equipped with the quotient topology, the stratification by the orbit
types of K -action and the smooth structure

C∞(Q/K ) := C∞(Q)K

(invariant smooth functions on Q). Thus, Q/K is a stratified topological space with smooth structure; see [16] for this
notion.

The total space T∗(Q/K ) is obtained as follows. The action of K on Q is lifted to a proper symplectic action of K
on the cotangent bundle T∗Q by the corresponding point transformations. The map J : T∗Q → k∗ defined by

〈J (η), X〉 := η(X Q), η ∈ T∗Q, X ∈ k, (4)

where X Q denotes the Killing vector field associated with X , is an equivariant momentum mapping for this action [1,
Section 4.2]. (Thus, these data define a Hamiltonian G-manifold naturally associated with (Q, K ).) Since J is
equivariant, the level set J−1(0) is invariant under K . The bundle space T∗(Q/K ) is given by the topological quotient
J−1(0)/K . It is equipped with the following structure; see [2,14,19] or [5, App. B.5]:
– A smooth Poisson structure. The natural smooth structure of T∗(Q/K ) is given by

C∞
(
T∗(Q/K )

)
:= C∞(T∗Q)K /V K ,

where V denotes the vanishing ideal of the level set J−1(0) and V K denotes the subset of K -invariants. Since K acts
symplectically on T∗Q, C∞(T∗Q)K is a Poisson subalgebra of C∞(T∗Q). In view of Noether’s theorem, J−1(0) is
invariant under the Hamiltonian flow of invariant functions. Hence, V K is a Poisson ideal in C∞(T∗Q)K . Therefore,
C∞ (T∗(Q/K )) inherits a Poisson bracket through

{ f + V K , g + V K
}T∗(Q/K ) = { f, g}T∗ Q, f, g ∈ C∞(T∗(Q/K )).

– A stratification by orbit types. Using the slice theorem it can be shown that for given orbit type τ the subset J−1(0)τ
of J−1(0) consisting of the elements of type τ is an embedded submanifold of T∗Q. Local charts on the τ -stratum
T∗(Q/K )τ of T∗(Q/K ) are then defined in the usual way: for a given point in T∗(Q/K )τ one chooses a representative
in J−1(0)τ and a slice about the representative for the action of K on J−1(0)τ . By restriction, the natural projection
πτ : J−1(0)τ → T∗(Q/K )τ induces a homeomorphism of the slice onto its image. Thus, charts on the slice induce
charts on T∗(Q/K )τ .
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– Symplectic structures on the strata T∗(Q/K )τ . One can prove that the annihilator of the pull-back of the symplectic
form ω of T∗Q to the submanifold J−1(0)τ coincides with the distribution defined by the tangent spaces of the orbits.
Therefore, the pull-back of ω to a slice for the action of K on J−1(0)τ is a symplectic form on that slice. Through
the homeomorphism of the slice onto its image in T∗(Q/K )τ , induced by the natural projection πτ , it defines a local
symplectic form on T∗(Q/K )τ . Due to the fact that ω is K -invariant, all the local forms merge to a symplectic form
ωτ on T∗(Q/K )τ . Then

π∗
τ ω

τ
= j∗τ ω,

where jτ : J−1(0)τ → T∗Q denotes the natural injection.
By construction, the injections (T∗Q)τ → T∗(Q/K ) are Poisson maps. Therefore, the above data turn T∗(Q/K )

into a stratified symplectic space.
Finally, the projection π of (3) is induced by the restriction of the natural (equivariant) projection T∗Q → Q to

the level set J−1(0). Since J−1(0) contains the zero section of T∗Q, π is surjective.

Remark 3.1. The fibres of (3) may intersect several distinct strata of T∗(Q/K ). In particular, π does not preserve the
orbit types. However, as the stabilizer of a covector in T∗Q cannot be larger than that of its base point, π does not
decrease orbit types. For a detailed study of the stratifications of the fibres of T∗(Q/K ); see [15].

Remark 3.2. Since (3) is a bundle in the topological category in the sense of [9] and since it plays the same role
for Q/K as the cotangent bundle T∗Q plays for Q, (3) is called the reduced cotangent bundle in [13], although in
general its elements are not covectors. When K acts freely then Q/K is a manifold and (3) is isomorphic to the
cotangent bundle of this manifold [1]. In general, the cotangent bundles of the strata of Q/K are dense subsets of the
corresponding strata of T∗(Q/K ) [15].

If, like in our case, (Q, K ) is the configuration space of a Hamiltonian system with symmetries, Q/K and
T∗(Q/K ) are referred to as the reduced configuration space and the reduced phase space, respectively. It can be shown
in general [14] that if an evolution curve in T∗Q w.r.t. a K -invariant Hamiltonian meets a submanifold J−1(0)τ then
it is contained completely in this submanifold. Therefore, dynamics in T∗(Q/K ) takes place inside the strata. Due to
Remark 3.1, an analogous statement for Q/K is in general not true, though.

We will now discuss the reduced data of our model in detail. The reduced configuration space Q/K and the reduced
phase space T∗(Q/K ) will be denoted by X and P , respectively.

3.2. The reduced configuration space X

In what follows we will write G for SU(3) and g for su(3).
By construction, X is the adjoint quotient G/Ad. As G is semisimple, this space has the following two standard

realizations. Let T denote the subgroup of diagonal matrices of G. One has T ∼= U(1) × U(1), a 2-torus. For
j = 1, 2, 3, let T( j) denote the subsets of T consisting of the elements whose entries coincide, possibly except for the
j th one. LetA denote one of the triangular subsets of T which are cut out by the T( j), j = 1, 2, 3; see Fig. 1. From the
embedding A → T , A acquires a Whitney smooth structure. It is a standard fact that the embeddings A → T → G
induce, by passing to quotients, isomorphisms

X ∼= T/S3 ∼= A (5)

of topological spaces with smooth structure. Here the symmetric group S3 acts by permutation of entries and the
smooth structure of T/S3 is defined by the invariant smooth functions on T .

Let us describe the stratification. The number of distinct entries of a ∈ A can be 3, 2 or 1. Denote the corresponding
subsets ofA byAk with k = 2, 1, 0. One hasA1 =

⋃3
j=1A∩ T( j). Topologically,A is a 2-simplex,A2 is its interior,

A1 consists of the edges without the vertices and A0 consists of the vertices. Taking into account that the stabilizer of
a under the action of SU(3) is given by the centralizer of a in SU(3), the stabilizer of a ∈ Ak is

k SU(3)-stabilizer S3-stabilizer
2 T {1}

1 U(2) S2
0 SU(3) S3

(6)
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Fig. 1. A possible choice for the subsetA of T . The numbers 0, 1, 2 stand for the central elements 1, ei 2
3π1 and ei 4

3π1, respectively.

In particular,A0 = Z3, the centre of SU(3). Denote the orbit types in the respective order by τ2, τ1 and τ0, irrespective
of the action they belong to, and the corresponding strata of X by X2, X1 and X0. (The numbering refers to the
dimensions of the strata.) Type τ2 is the principal orbit type and X2 is the principal stratum.

It is easy to see that the isomorphism X ∼= A holds on the level of stratified smooth topological spaces.

Remark 3.3. The identification of X with A endows X with a CW-complex structure in an obvious fashion.
Already for the quotient (SU(3)× SU(3)) /SU(3) with SU(3) acting by diagonal conjugation, which is the reduced
configuration space of lattice SU(3)-gauge theory on a lattice with 2 plaquettes, the construction of a CW-complex
structure is much more complicated; see [4].

3.3. The reduced phase space P

As anticipated in Section 2, we identify T∗G with the direct product G ×g by virtue of the natural diffeomorphism

G × g → T∗G, (a, A) 7→ 〈A,R′

a−1 ·〉. (7)

Here, Ra : G → G denotes right multiplication by a ∈ G and 〈·, ·〉 is the ordinary scalar product of complex matrices,

〈A, B〉 = tr(AĎB), A, B ∈ M3(C).

When restricted to g this form yields a real scalar product which, up to a constant factor, coincides with the negative
of the Killing form of g:

〈A, B〉 = −tr(AB), A, B ∈ g.

Since T(G ×g) ∼= TG ×Tg, vectors tangent to G ×g at (a, A) can be written as (R′
a B, (A,C)) with B,C ∈ g. Under

the identification (7) the symplectic potential of T∗G takes the standard form

θ(a,A)
(
R′

a B, (A,C)
)

= 〈A, B〉, (8)

and hence the symplectic form ω = dθ is

ω(a,A)
(
(R′

a B1, (A,C1)), (R′
a B2, (A,C2))

)
= 〈B1,C2〉 − 〈C1, B2〉 − 〈A, [B1, B2]〉. (9)

The action of G on T∗G by the induced point transformations is given by conjugation, i.e.,

b · (a, A) = (bab−1, bAb−1). (10)

If we furthermore identify g∗ with g by virtue of the scalar product 〈·, ·〉, the natural momentum mapping for this
action is given by the map

J : G × g → g, J (a, A) = A − a−1 Aa. (11)

The level set J−1(0) is therefore given by all pairs (a, A) ∈ G × g where a and A commute. In particular, it contains
the subset T × t. By restriction of the natural projection to orbits we obtain a map

λ : T × t → P. (12)
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Let (a, A) ∈ J−1(0). Since a and A commute, they possess a common eigenbasis. Since a is unitary and A is anti-
Hermitian, the eigenbasis can be chosen to be orthonormal. Hence, by G-action, (a, A) can be transported to T × t. In
other words, every G-orbit in J−1(0) intersects the subset T × t. Hence, λ is surjective. Since two elements of T × t
are conjugate under G iff they differ by a simultaneous permutation of their entries, then λ descends to a bijection

(T × t)/S3 → P.

Standard arguments ensure that this is in fact a homeomorphism. Thus, we can use λ to describe P . In particular, P is
an orbifold.

We start with the stratification. The number of entries which simultaneously coincide for both a and A can be 0, 2
or 3. Denote the corresponding subsets of T × t by (T × t)k with k = 2, 1, 0, respectively. The stabilizers and orbit
types of (a, A) ∈ (T × t)k under SU(3)-action and S3-action are

k SU(3)-stabilizer S3-stabilizer orbit type
2 T {1} τ2
1 U(2) S2 τ1
0 SU(3) S3 τ0

(13)

Since the orbit types are the same as for X we use the same notation. Let Pk ⊆ P denote the stratum of type τk ,
k = 0, 1, 2. P2 is the principal stratum. Since the subsets (T × t)k are the pre-images of the strata Pk under λ, they
will be referred to as strata of T × t. By restriction, λ induces maps

λk : (T × t)k → Pk, k = 2, 1, 0, (14)

which descend to homeomorphisms of (T × t)k/S3 onto Pk , k = 2, 1, 0.
We determine (T × t)k explicitly. Recall that Z3 denotes the centre of G = SU(3). As for T( j), let t( j), j = 1, 2, 3,

denote the subset of t consisting of the elements whose entries coincide, possibly except for the j th one. We find

(T × t)0 = Z3 × {0},

(T × t)1 =

(
3⋃

j=1

T( j) × t( j)

)
− (T × t)0,

(T × t)2 = T × t − (T × t)1.

These are embedded submanifolds of T × t. Since t is the Lie subalgebra of g associated with the Lie subgroup T of
G, T × t is a symplectic submanifold of G × g. Analogously, so are T( j) × t( j), j = 1, 2, 3. It follows that (T × t)k ,
k = 2, 1, are symplectic manifolds. For convenience, in the following we will view (T × t)0 as a (trivially) symplectic
manifold, too.

Theorem 3.4. The map λ is Poisson. The maps λk are local symplectomorphisms.

Proof. By definition, C∞(P) is a quotient of C∞(G × g)G . Hence, the first assertion is a direct consequence of
the fact that T × t is a symplectic submanifold of G × g. For the second assertion, recall the construction of the
symplectic forms on the strata Pk from Section 3.1. The assertion then follows by observing that any point of Pk
has a representative in (T × t)k and that a sufficiently small neighbourhood of the chosen representative in (T × t)k
provides a slice for the action of G on the submanifold J−1(0)k of G × g. Here J−1(0)k denotes the subset of J−1(0)
consisting of the elements of the orbits of type τk . �

Remark 3.5. 1. Since the submanifolds (T ×t)k are symplectic and since S3 is finite, the quotient (T ×t)/S3 naturally
carries the structure of a stratified symplectic space. Of course, this structure might be viewed as to be obtained by
singular Marsden–Weinstein reduction with (necessarily) trivial momentum map. Then Theorem 3.4 says that the
map λ induces an isomorphism of stratified symplectic spaces of (T × t)/S3 onto P .

2. The dynamics on P is thus given by the dynamics on T × t w.r.t. an S3-invariant Hamiltonian and the symplectic
form (9). Similarly, motion on X is given by S3-invariant motion on the 2-torus with metric defined by the scalar
product 〈·, ·〉.
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Fig. 2. The fibres π−1(a).

3.4. The projection π : P → X

Recall from Section 3.1 that the projection π : P → X is induced by the cotangent bundle projection T∗G → G.
By virtue of the identification (7), the latter is identified with the natural projection to the first factor pr1 : G ×g → G.
Hence, one has the following commutative diagram:

T × t
λ

−−−−→ P

pr1

y yπ
T −−−−→ X

where the lower horizontal arrow is defined by restriction of the natural projection G → X . It follows that the fibre
over a ∈ X (X being identified with A and hence with a subset of T ) is given by

π−1(a) = t/S(a),

where S(a) is the stabilizer of a under the action of S3. According to (6), there are three cases, illustrated in
Fig. 2.

– If a ∈ X2, S(a) is trivial, and hence π−1(a) = t. That is, the fibre is a full 2-plane and belongs to the stratum
P2.

– If a ∈ X1 then a ∈ T( j)−Z3 for some j = 1, 2, 3. Then S(a) = S2, acting by permuting the two entries besides the
j th one. Hence, π−1(a) = t/S2, acting by reflection about the subspace t( j). Therefore, the fibre may be identified
with one of the two half-planes of t cut out by t( j). Its interior belongs to the stratum P2, whereas the boundary t( j)
belongs to the stratum P1.

– If a ∈ X0, i.e., a ∈ Z3, then S(a) = S3. The action of S3 on t is generated by the reflections about the three
subspaces t( j), j = 1, 2, 3. Hence, the fibre may be identified with one of the six (closed) Weyl chambers
of t cut out by t( j), j = 1, 2, 3 (the walls of the Weyl chambers). The interior of the Weyl chamber belongs
to the stratum P2, the walls minus the origin belong to the stratum P1 and the origin belongs to the stratum
P0.

One can see explicitly that the projection π : P → X does not preserve the stratification, because the
fibres over points in X1 and X0 intersect more than one stratum of P . As stated in Remark 3.1, this is a general
phenomenon.

Remark 3.6. The shape of the fibres resembles the shape of a neighbourhood of the base point in X . Indeed, the fibre
over a ∈ X might be identified with the space of tangent vectors of smooth curves in X starting at a: for a ∈ X2,
any tangent vector occurs; for a ∈ X1, the tangent vectors form a closed half-plane; and for a ∈ X0, they form a
cone of angle π/3. Thus, intuitively the reduced phase may be identified with the tangent bundle of X , defined in
the above sense. This relation seems to be a general phenomenon in singular cotangent bundle reduction. It certainly
deserves to be made precise, because it is likely to be the singular counterpart of the well-known result that, in the
regular case, Marsden–Weinstein reduction of a cotangent bundle yields the cotangent bundle of the reduced base
manifold.



1200 E. Fischer et al. / Journal of Geometry and Physics 57 (2007) 1193–1213

Remark 3.7. The description of the reduced data given here generalizes to an arbitrary compact semisimple Lie group
in an obvious way: T and t are replaced by a maximal torus in G and its Lie algebra, which is a Cartan subalgebra of
g.A is replaced by a Weyl alcove in T and S3 is replaced by the Weyl group of G. It is interesting that for G = SU(2)
one obtains the reduced phase space of the spherical pendulum with zero angular momentum, which is the well-known
canoe [5, Section VI.2].

This completes the construction of the reduced data for the model under consideration. Next, we will derive tools
for studying the dynamics of this model. That is, first, a symplectic covering of T × t and, second, a description of P
and X in terms of invariants.

4. Symplectic covering of T × t

Recall the symplectic form ω of G × g; see (9). By an abuse of notation, the pull-back of this form to T × t will
also be denoted by ω. Elements of R4 will be denoted by (x, p) ≡ ((x1, x2), (p1, p2)). In this section, we use the
exponential map of T to construct a covering ψ : R4

→ T × t which pulls back ω to the natural symplectic form
dpi ∧ dx i of R4 (summation convention). We choose ψ to be induced by some covering ϕ : R2

→ T by virtue of the
commutative diagram

TR2 ϕ′

−−−−→ TT

g
y yh

R4 ∼= T∗R2 ψ
−−−−→ T∗T ∼= T × t

(15)

where the vertical arrows stand for the isomorphisms between the tangent and cotangent bundles induced by the
natural Riemannian metrics g on R2 and h on T . Recall that h is given by the restriction to T of the Killing metric
of G induced by the scalar product 〈·, ·〉 on g. A straightforward calculation, where R2 and T may be replaced by
arbitrary Riemannian manifolds, shows that if ϕ is isometric then ψ is symplectic. Thus, all we have to do is to choose
ϕ appropriately. For example, we can choose ϕ as the composition of the isomorphism R2

→ t, mapping the canonical
basis vectors e1, e2 to the orthonormal basis

diag

(
i

√
6
,

i
√

6
,−i

√
2
3

)
, diag

(
i

√
2
,−

i
√

2
, 0
)

in t, with the exponential map t → T :

ϕ(x) = diag
(

e
i
(

1
√

6
x1

+
1

√
2

x2
)
, e

i
(

1
√

6
x1

−
1

√
2

x2
)
, e−i

√
2
3 x1
)
. (16)

The corresponding covering ψ : R4
→ T × t is

ψ(x, p) =

(
ϕ(x), diag

(
i
(

1
√

6
p1 +

1
√

2
p2

)
, i
(

1
√

6
p1 −

1
√

2
p2

)
,−i

√
2
3

p1

))
. (17)

Remark 4.1. Since ψ is a local diffeomorphism it is a local symplectomorphism and hence provides local Darboux
coordinates on T × t.

Now having constructed ψ , we can compose it with the map λ : T × t → P , see (12), to obtain

χ := λ ◦ ψ : R4
→ P. (18)

Let R4
k = χ−1(Pk) denote the pre-image of the stratum Pk under χ , k = 2, 1, 0. Using R4

k = ψ−1((T × t)k) we find

R4
0 = R2

0 × {0}, R4
1 =

(
3⋃

j=1

⋃
l∈Z

R2
( j)l × R2

( j)0

)
\ R4

0, R4
2 = R4

\ R4
1, (19)
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Fig. 3. The subsets R2
0 and R2

( j)l of R2. The elements of R2
0 are represented by • and are labelled by the element of X0 they project to: 0, 1, 2

stands for 1, exp i 2
3π1, exp i 4

3π1, respectively. The affine subspaces R2
( j)l are labelled by ( j)

l .

where

R2
0 =

{(
l

√
2
3
π, (l + 2m)

√
2π

)∣∣∣∣∣ l,m ∈ Z

}
R2
(1)l =

{(
y,

√
3y + 2l

√
2π
)∣∣∣ y ∈ R

}
R2
(2)l =

{(
y,−

√
3y + 2l

√
2π
)∣∣∣ y ∈ R

}
R2
(3)l =

{(
y, l

√
2π
)∣∣∣ y ∈ R

}
.

The R2
( j)l are affine subspaces of R2, intersecting each other in the points of R2

0; see Fig. 3. The R4
k are symplectic

submanifolds of R4: for k = 0 this is trivial, for k = 2 it is obvious. For k = 1 it follows from the fact that in the
natural identification of T∗R2 with R4 utilized here, R2

( j)l × R2
( j)l corresponds to T∗R2

( j)l , j = 1, 2, 3, l ∈ Z.
By restriction, ψ and χ induce maps

ψk : R4
k → (T × t)k, χk = λk ◦ ψk : R4

k → Pk, k = 2, 1, 0, (20)

respectively.

Theorem 4.2. The map χ is Poisson, i.e., for f, g ∈ C∞(P) there holds

χ∗
{ f, g}P =

∂(χ∗ f )
∂xk

∂(χ∗g)
∂pk

−
∂(χ∗ f )
∂pk

∂(χ∗g)
∂xk .

The maps χk are local symplectomorphisms.

Proof. This follows from Theorem 3.4. In addition, for the second assertion one has to use that the ψk are local
symplectomorphisms. This is a consequence of the fact that (T × t)k are embedded submanifolds of T × t. �

5. Description in terms of invariants

In this section, we derive the invariant-theoretic description of the reduced data of our model. Let us start with
recalling the general theory. Consider an orthogonal representation of some Lie group H on a Euclidean space Rn .
The algebra of invariant polynomials of this representation is finitely generated [20]. Any finite set of generators
ρ1, . . . , ρp defines a map

ρ = (ρ1, . . . , ρp) : Rn/H → Rp.
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This map is a homeomorphism onto its image [18] and the image is a closed semialgebraic subset of Rp, i.e., it
is the solution set of a logical combination of algebraic equations and inequalities. The equations are provided by
the relations amongst the generators ρi and the inequalities keep track of their ranges. The set {ρ1, . . . , ρp} and the
map ρ are called a Hilbert basis and a Hilbert map for the representation, respectively. If V ⊆ Rn is an H -invariant
semialgebraic subset, then ρ restricts to a homeomorphism of V/H onto the image ρ(V ) ⊆ Rp and the image is again
a semialgebraic subset. The equations are now given by the relations amongst the restricted mappings ρi |V and the
inequalities are given by their ranges.

5.1. Hilbert map

To apply the method explained above to our model, we consider the realification of the representation of G = SU(3)
on M3(C)⊕ M3(C) by diagonal conjugation:

a · (X1, X2) = (aX1a−1, aX2a−1) (21)

and set V = J−1(0) ⊆ G × g. Indeed, since this (complex) representation is unitary w.r.t. the scalar product

〈(X1, X2), (Y1, Y2)〉 = tr(XĎ
1Y1)+ tr(XĎ

2Y2), (22)

the realification, equipped with the real part of (22) as a scalar product, is orthogonal. Moreover, the subset
J−1(0) ⊆ M3(C)⊕ M3(C) is defined by the equations

aĎa = 1, det(a) = 1, AĎ
+ A = 0, a A − Aa = 0, (23)

and hence is real algebraic.
Since the invariant polynomials of the realification of a complex representation are given by the real and imaginary

parts of the invariant polynomials of the original representation, we have to find the generators for the latter. According
to [17], a set of generators for the invariant polynomials of the representation of SU(n) on Mn(C)m by diagonal
conjugation is given by the trace monomials up to order 2n

− 1 in X1, . . . , Xm and XĎ
1, . . . , XĎ

m . The generators are
subject to the relation∑

σ∈Sn+1

sgn(σ )
∏

(k1,...,k j )
cycle of σ

tr(Yk1 · · · Yk j ) = 0, Y1, . . . , Yn+1 ∈ Mn(C), (24)

called the fundamental trace identity (FTI). Thus, according to the general theory, the real and imaginary parts of the
trace monomials up to order 7 in a, A and aĎ, AĎ, where (a, A) ∈ J−1(0), provide a homeomorphism of P onto a
semialgebraic subset of Rp for some large p. However, for the restrictions of the trace monomials to J−1(0) more
relations hold than just the FTI. We can use them to reduce the set of generators and thus to simplify the Hilbert
map. They arise from the matrix identities (23) and the Cayley–Hamilton theorem which says that the characteristic
polynomial χX of any X ∈ Mn(C) obeys χX (X) = 0. The characteristic polynomials of a and A are

χa(z) = −z3
+ tr(a)z2

− tr(a)z + 1, χA(z) = −z3
+

1
2

tr(A2)z +
1
3

tr(A3), (25)

respectively. Using (23), any trace monomial can be transformed to the form tr(ak Al) or its conjugate for some k, l.
Using (25) it can then be rewritten as a polynomial in the monomials

tr(a), tr(a A), tr(a A2), tr(A2), tr(A3).

We define

ck := Re(tr(a(−iA)k)), dk := Im(tr(a(−iA)k)), k = 0, 1, 2,
tk := tr((−iA)k), k = 2, 3.

As iA is self-adjoint, t2 and t3 are real. Thus, we arrive at the simplified Hilbert map

ρP = (c0, d0, c1, d1, c2, d2, t2, t3) : P → R8.
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By embedding G ↪→ G × {0} ⊆ J−1(0), from ρP we obtain the Hilbert map for the action of G on itself by inner
automorphisms, i.e., for the reduced configuration space X :

ρX = (c0, d0) : X → R2. (26)

Analogously, embedding g ↪→ {1} × g ⊆ J−1(0) and using that on the image of this embedding there holds c2 = t2
and c1 = d1 = d2 = 0, we obtain the Hilbert map for the adjoint representation of SU(3), or the corresponding
representation of S3 on t,

ρAd = (t2, t3) : su(3)/Ad → R2.

By construction, the maps ρP , ρX and ρAd are homeomorphisms onto their images. The images will be denoted by
P̃ , X̃ and Ỹ , respectively. The images of the strata Pk of P and Xk of X will be denoted by P̃k and X̃k , respectively.
As P̃ , X̃ and Ỹ are projections of a semialgebraic subset, they are semialgebraic themselves. The reason why we
consider Ỹ is that it will be needed in the discussion of P̃ .

5.2. Reduced configuration space and quotient of adjoint representation

The subset X̃ was discussed in [3]. We recall the results. A natural candidate for an inequality is given by the
discriminant D(χa) of χa . Indeed, as a has eigenvalues α, β and αβ, where α, β ∈ U(1),

D(χa) = (α − β)2(α − αβ)2(β − αβ)2 = −|αβ|
2
|α − β|

2
|α − αβ|

2
|β − αβ|

2
≤ 0.

Define

P1(c0(a), d0(a)) := −D(χa), a ∈ SU(3).

Expressing the discriminant in terms of the coefficients of χa , see (25), yields

P1(c0, d0) = 27 − c4
0 − 2c2

0d2
0 − d4

0 + 8c3
0 − 24c0d2

0 − 18c2
0 − 18d2

0 .

Moreover, define

P0(c0, d0) := 9 − c2
0 − d2

0 .

Theorem 5.1. X̃ is the subset of R2 defined by the inequality P1 ≥ 0. As subsets of X̃ , the strata are defined by the
following equations and inequalities:

X̃0: P0 = 0, X̃1: P1 = 0 and P0 > 0, X̃2: P1 > 0.

Proof. By construction, X̃ is contained in the subset defined by P1 ≥ 0. The inverse inclusion was shown in [3]. To
discuss the stratification, let a ∈ X (again identified with A). One has a ∈ X2 iff all its entries are distinct, i.e., iff
D(χa) 6= 0. This yields the assertion for X̃2. On has a ∈ X0 iff all its entries are equal. This is equivalent to |tr(a)| = 3,
i.e., c0(a)2 + d2

0 (a) = 9, and hence the assertion for X̃0. Then the assertion for X̃1 follows. �

The curve P1 = 0 is a 3-hypocycloid in a circle of radius 3 and X̃ is the subset of R2 enclosed by this hypocycloid;
see Fig. 4.

Next, consider Ỹ . Again, the discriminant of χA is a natural candidate for an inequality: as A has purely imaginary
eigenvalues, D(χA) ≤ 0. Define

P2(t2(A), t3(A)) := −D(χA), A ∈ su(3).

In terms of the coefficients of χA,

P2(t2, t3) =
1
2

t3
2 − 3t2

3 .
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Fig. 4. The subsets P1 ≥ 0 (left) and P2 ≥ 0 (right). The curve P1 = 0 is a 3-hypocycloid. All the singular points of the curves P1 = 0 and P2 = 0
are cusps.

Lemma 5.2. Ỹ is the subset of R2 defined by the inequality P2 ≥ 0. A matrix A ∈ t has n distinct entries iff the
following conditions hold:

n = 1: t2 = 0, n = 2: P2 = 0 and t2 > 0, n = 3: P2 > 0.

Proof. By construction, Ỹ is contained in the subset of R2 defined by P2 ≥ 0. Conversely, for any choice of
(t2, t3) ∈ R2 there exists A ∈ M3(C) with these values for the invariants t2, t3. It may be chosen as a diagonal
matrix with entries being the zeros of the polynomial χA, see (25), where the traces have to be expressed in terms
of the chosen values for t2 and t3. It suffices to show that the inequality P2(t2, t3) ≥ 0 implies A ∈ g = su(3).
Indeed, replacing z by iw yields iχA = −w3

+
1
2 t2w +

1
3 t3. This polynomial has real coefficients and discriminant

−P2(t2, t3) ≤ 0. Therefore, its roots w1, w2, w3 are real. Since it does not contain a square term, w1 +w2 +w3 = 0.
Then A = diag(iw1, iw2, iw3) ∈ su(3).

The conditions that all entries are equal or that all entries are distinct are obvious. The condition that two entries
are distinct then follows on observing that P2 ≥ 0 implies t2 ≥ 0. �

The curve P2 = 0 is shown in Fig. 4. The inequality P2 ≥ 0 describes the part of the t2–t3 plane to the right of this
curve.

5.3. Reduced phase space

Now we turn to P̃ . First, let us look for equations defining J−1(0) inside G × g, i.e., reflecting the fact that a and
A commute. The following two families of functions on G × g obviously vanish on J−1(0):

fk(a, A) := 2(−i)k−1(tr(Aka AaĎ)− tr(Ak+1)),

gk(a, A) := (−i)k−1(tr(Aka Aa)− tr(Ak+1a2)), k = 1, 2, . . . .

The fk and gk are polynomials on G × g. The fk have real coefficients and the gk have complex coefficients. Being
invariant, they can be written as polynomials in the variables ck, dk, tk . This way, we obtain two families of equations
whose common zero set contains ρ(P). They cannot all be independent. Indeed, for k ≥ 3, using (25) one finds

fk(a, A) = −
1
2

tr(A2) fk−2(a, A)+
i
3

tr(A3) fk−3(a, A),

gk(a, A) = −
1
2

tr(A2)gk−2(a, A)+
i
3

tr(A3)gk−3(a, A),

where f0 = g0 ≡ 0. Hence, the relevant equations are those arising from f1, f2, g1 and g2. Taking the real and
imaginary parts – f1 and f2 are already real — we obtain the following six equations:
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f1 = (3 + c2
0 + d2

0 )t2 − 2(c2
1 + d2

1 )− 4(c0c2 + d0d2) = 0, (27)

f2 =

(
3 −

1
3
(c2

0 + d2
0 )

)
t3 − 2(c1c2 + d1d2) = 0, (28)

Re(g1) = c0c2 − d0d2 − 2c0t2 − c2
1 + d2

1 + 3c2 = 0, (29)
Im(g1) = c0d2 + d0c2 + 2d0t2 − 2c1d1 − 3d2 = 0, (30)

Re(g2) =
1
2
((c0 + 1)c1 − d0d1)t2 +

(
1
3
(c2

0 − d2
0 )− c0

)
t3 − c1c2 + d1d2 = 0, (31)

Im(g2) =
1
2
((c0 − 1)d1 + d0c1)t2 +

(
2
3

c0d0 + d0

)
t3 − c1d2 − d1c2 = 0. (32)

These are the candidates for the equations defining P̃ .
Next, we look for the inequalities. Besides the two inequalities P1 ≥ 0 and P2 ≥ 0 found above, which contain

only pure invariants, there is another obvious one which contains the mixed invariants c2 and d2. Namely, for given
a ∈ T and A ∈ t, the entries of a(−iA)2 are complex numbers whose modulus is given by the corresponding entry of
(−iA)2. Hence, |tr(a(−iA)2)| ≤ tr((−iA)2). In terms of the real invariants this reads P3(c2, d2, t2) ≥ 0, where

P3(c2, d2, t2) := t2
2 − c2

2 − d2
2 .

Theorem 5.3. P̃ is the subset of R8 defined by the equations and inequalities

f1 = f2 = Re(g1) = Im(g1) = Im(g2) = 0, Pj ≥ 0, j = 1, 2, 3. (33)

Proof. We have already checked that P̃ is contained in the subset (33). In order to prove the inverse inclusion, let
there be given a point x = (c0, d0, c1, d1, c2, d2, t2, t3) from the subset (33). We have to show that there exists a pair
(a, A) ∈ T × t such that ρP (a, A) = x . Due to Theorem 5.1 and Lemma 5.2, there exist a ∈ T and A ∈ t with
ρX (a) = (c0, d0) and ρAd(A) = (t2, t3), respectively. All pairs in the orbit of (a, A) under the direct product action
of S3 × S3 on T × t have the same values for the invariants c0, d0, t2, t3. Hence, if in (33) we view c0, d0, t2, t3 as
fixed parameters and c1, d1, c2, d2 as the variables, it suffices to show that the number nsol of distinct solutions of this
system of equations and inequalities does not exceed the number norb of orbits under the diagonal action of S3 on the
S3 × S3-orbit of (a, A). This holds in particular if nsol = 1, i.e., if the solution is unique.

We start with separating c2 and d2 in the equations Re(g1) = 0 and Im(g1) = 0:

P0c2 = (3 − c0)c2
1 − (3 − c0)d2

1 − 2d0c1d1 + 2(c0(3 − c0)+ d2
0 )t2, (34)

P0d2 = d0c2
1 − d0d2

1 − 2(3 + c0)c1d1 + 2d0(3 + 2c0)t2. (35)

The inequality P1 ≥ 0 allows for three values of c0, d0 where the factor P0 vanishes:

(c0, d0) = (3, 0),
(

−
3
2
,

3
2

√
3
)
,

(
−

3
2
,−

3
2

√
3
)
.

In the first case, the combination f1 + 2 Re(g1) = 0 yields c1 = 0. Then (29) reads 6(t2 − c2) + d2
1 = 0 and (30)

reads d1(t2 − c2) = 0. It follows that d1 = 0 and c2 = t2. Then P3 ≥ 0 implies d2 = 0. In the other two cases,
f1 − 4 Re(g1) = 0 implies c1 = d1 = 0. Resolving f1 for c2 and inserting this into P3 yields −(

√
3t2 ± 2d2)

2
≥ 0.

Hence, d2 = ∓

√
3

2 t2 and, then, c2 = −
1
2 t2. In all three cases nsol = 1.

For the rest of the proof assume P0 6= 0 (due to P1 ≥ 0 then P0 > 0). Then c2 and d2 are fixed by (34) and (35)
and can be replaced in (27) and (28):

2(9 + 6c0 − 3c2
0 + d2

0 )c
2
1 + 2Q1d2

1 − 8d0(3 + 2c0)c1d1 − P1t2 = 0, (36)

2(c0 − 3)c3
1 + 2d0d3

1 + 2d0c2
1d1 + 2(9 + c0)c1d2

1 + 4(c2
0 − 3c0 − d2

0 )t2c1

− (12 + 8c0)d0t2d1 +
1
3

P2
0 t3 = 0, (37)
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where we have introduced the notation

Q1 = (3 − c0)
2
− 3d2

0 .

The coefficient Q1 vanishes exactly for the three values of c0, d0 which obey P0 = 0. Hence, we can solve (36) for
d1,

d1 =
1

2Q1

(
(12 + 8c0)d0c1 ±

√
2P1(Q1t2 − 6c2

1)

)
. (38)

If t2 = 0 then c1 = 0, because d1 must be real, and hence d1 = 0. Due to P2 ≥ 0, also t3 = 0. Then (34) and (35)
imply c2 = d2 = 0. Thus, again nsol = 1.

In the sequel assume t2 6= 0 (due to P2 ≥ 0 then t2 > 0). If P1 = 0, d1 is a multiple of c1, and hence replacing d1
in (37) yields a third-order polynomial equation which has at most three real solutions. That is, nsol ≤ 3. On the other
hand, due to Theorem 5.1, a has two distinct entries. Due to Lemma 5.2, A has at least two distinct entries. Therefore,
norb = 3.

In what follows we assume P1(c0, d0) > 0. Then a has three distinct eigenvalues.
First, consider the case d0 = 0. Here, d1 is a pure root and (37) contains d1 only in second order. Hence, inserting

(38) and discarding the global factor (c0+3)2
3(c0−3) we obtain the third-order polynomial equation

24c3
1 − 3(3 − c0)

2t2c1 − (3 − c0)
3t3 = 0. (39)

Since this equation has at most three real roots, each of which gives rise to at most two values of d1 by (38), nsol ≤ 6.
It follows that in the case P2 > 0, where A has three distinct eigenvalues, norb = 6 ≥ nsol. In the case P2 = 0, A has
two distinct eigenvalues, so that norb = 3. To determine nsol for this case, set

x :=
3

√
t3
6
.

Then t2 = 6x2 and t3 = 6x3. Substituting this in (39) and dividing by 6 we obtain

4c3
1 − 3(3 − c0)

2x2c1 − (3 − c0)
3x3

= 0.

Since x 6= 0 by assumption, the solutions of this equation are given by c1 = c̃1x , where c̃1 are the solutions of the
same equation with x = 1. We find c̃1 = 3 − c0 with multiplicity 1 and c̃1 =

1
2 (c0 − 3) with multiplicity 2. Then (38)

yields d1 = 0 in the first case and d1 = ±
3
2
√
(3 − c0)(1 + c0)x in the second one. Thus, nsol = 3 = norb.

Next, consider the case d0 6= 0. We insert (38) into (37) and write this equation in the form

±3d0(Q1t2 − 24c2
1)

√
2P1(Q1t2 − 6c2

1) = Q, (40)

where Q is some polynomial and we have omitted a common factor 3
√

2P2
0 /Q3

1 to avoid fractures. By squaring (40)
we obtain the sixth-order polynomial equation in c1

1152c6
1 − 288Q1t2c4

1 + 96Q2t3c3
1 + 18Q2

1t2
2 c2

1 − 12Q3t2t3c1 + 2Q3
1t2

3 − 9P1d2
0 t3

2 = 0, (41)

where

Q2 = c3
0 + 9c0d2

0 − 9c2
0 + 27d2

0 + 27c0 − 27,

Q3 = c5
0 + 6c3

0d2
0 − 27c0d4

0 − 15c4
0 − 81d4

0 + 90c3
0 − 162c0d2

0 − 270c2
0 + 324d2

0 + 405c0 − 243,

and we have omitted a global factor Q3
1. To a solution c1 of (41) for which the l.h.s. of (40) does not vanish

there corresponds one of the two signs in (40) and hence by (38) a unique value for d1. To a solution for which
Q1t2 −6c2

1 = 0 there corresponds a unique d1 anyway. To a solution for which Q1t2 −24c2
1 = 0 there correspond two

values of d1, but such a solution necessarily has multiplicity 2. (This phenomenon should be interpreted the other way
around: generically (41) has distinct solutions c1, each with its own associated d1. When two of the solutions happen
to coincide, the associated values of d1 seem to emerge from the same c1.) From these observations we conclude that
nsol ≤ 6, so that for P2 > 0 we have norb = 6 ≥ nsol.
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Fig. 5. Projection of the fibres π̃−1(c0, d0) to the t2–t3–c1 plane (top) and the t2–t3 plane (bottom).

It remains to consider the case P2 = 0, where norb = 3. As before, we replace t2 = 6x2 and t3 = 6x3 in (41) and
argue that the solutions of the resulting equation are given by c1 = c̃1x , where c̃1 are the solutions of this equation
with x set to 1. The latter equation turns out to be the square of

4c̃3
1 − 3Q1c̃1 + Q2 = 0, (42)

and hence it has at most three distinct real solutions c̃1. We claim that for none of the corresponding solutions c1 = c̃1x
does the factor Q1t2 − 24c2

1 = 6x(Q1 − 4c̃2
1) in (40) vanish. Assume, on the contrary, Q1 − 4c̃2

1 = 0. Inserting
c̃1 = ±

√
Q1 into (42) and separating the terms with the root yields ±Q1

√
Q1 = Q2. Taking the square we obtain

27d2
0 P1 = 0, in contradiction to the assumptions d0 6= 0 and P1 6= 0. It follows that to each c1 there corresponds a

unique value for d1. Thus, nsol = 3 = norb.
This completes the proof of Theorem 5.3. �

Remark 5.4. As a by-product of the proof we have seen that the six invariants c0, d0, c1, d1, t2, t3 are sufficient
for separating the points of P . Hence, they define a homeomorphism of P onto the projection of P̃ to R6. (Outside
some ‘momentum cut-off’ ‖A‖ ≤ k the homeomorphism property is obvious and inside one uses that a bijection of a
compact space onto a Hausdorff space is a homeomorphism.) The invariants c2, d2 cannot be expressed as polynomials
in the other invariants, though. However, according to (34) and (35) and the subsequent discussion, on P̃ they can be
expressed as continuous functions in the other invariants. For (c0, d0) 6= (3, 0), (− 3

2 ,±
3
2

√
3),

c2 = P−1
0 ((3 − c0)c2

1 − (3 − c0)d2
1 − 2d0c1d1 + 2(c0(3 − c0)+ d2

0 )t2), (43)

d2 = P−1
0 (d0c2

1 − d0d2
1 − 2(3 + c0)c1d1 + 2d0(3 + 2c0)t2), (44)

whereas for (c0, d0) = (3, 0), (− 3
2 ,±

3
2

√
3), in the respective order,

(c2, d2) = (3t2, 0),

(
−

1
2

t2,∓

√
3

2
t2

)
. (45)

One can extend c2 and d2 to rational functions on R6 by means of the expressions on the r.h.s. of (43) and (44). Then
the values (45) have to be understood as the limits when (c0, d0) → (3, 0), (− 3

2 ,±
3
2

√
3) along P̃ .

On the level of the semialgebraic sets, the projection π̃ : P̃ → X̃ is just given by the natural projection to the
c0–d0 plane. Fig. 5 shows the projections of the fibres π̃−1(c0, d0) to the three-dimensional subspace spanned by the
coordinates t2, t3 and c1 for five different points (c0, d0) ∈ X̃ . In addition, the projection of the fibres to the t2–t3
plane, which just coincides with Ỹ , is shown, too. The figures were drawn using a parametrization of the invariants,
induced by a parametrization of the matrices a and A.

For (c0, d0) belonging to the stratum X̃2 the fibre π̃−1(c0, d0) is a full 2-plane, folded three times over the curve
P2 = 0 (Fig. 5(a) and (b)). The self-intersections present in these figures are remnants of the projection to the t2–t3–c1
hyperplane. In fact, they correspond to solutions c1 of (41) of multiplicity 2 where the factor Q1t2 − 24c2

1 in (40)
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vanishes, so that both values of d1 in (38) are allowed. Since the latter are distinct (unless t2 = 0), the fictitious
self-intersection of the fibre is not present in the full R8.

When (c0, d0) approaches the stratum X̃1, i.e., the curve P1 = 0, the two halves of the plane come closer (Fig. 5(b)).
For (c0, d0) ∈ X̃1 they meet each other and thus make the fibre a half-plane with a double fold (Fig. 5(c)). On moving
(c0, d0) further along X̃1 towards one of the points of the stratum X̃0 the three layers of this half-plane approach each
other (Fig. 5(d)) to finally merge to a ‘sixth-plane’ cone for (c0, d0) ∈ X̃0 (Fig. 5(e)). This illustrates the abstract
description of the fibres in Section 3.4.

5.4. Stratification

We determine the equations and inequalities defining the strata of P̃ . We will make use of the discriminant of the
characteristic polynomial χa A. Define

P4(c0(a, A), . . . , t3(a, A)) := Re(D(χa A)).

Using (24) and (25) one finds

χa A(z) = −z3
+ tr(a A)z2

+

(
1
2

tr(A2)tr(a)− tr(a A2)

)
z +

1
3

tr(A3).

It follows that

P4 = c2
1c2

2 − c2
1d2

2 + 4c1d1c2d2 + d2
1 d2

2 −
4
3

t3c3
1 − c0t2c2

1c2 + d0t2c2
1d2 + 4t3c1d2

1

− 2d0t2c1d1c2 − 2c0t2c1d1d2 + c0t2d2
1 c2 − d0t2d2

1 d2 − 4c3
2

+ 12c2d2
2 +

1
4
(c2

0 − d2
0 )t

2
2 c2

1 + c0d0t2
2 c1d1 + 6t3c1c2 −

1
4
(c2

0 − d2
0 )t

2
2 d2

1

+ 6t3d1d2 + 6c0t2c2
2 − 12d0t2c2d2 − 6c0t2d2

2 − 3c0t2t3c1

− 3d0t2t3d1 + 3(d2
0 − c2

0)t
2
2 c2 + 6c0d0t2

2 d2 +
1
2

c0(c2
0 − 3d2

0 )t
3
2 − 3t2

3 .

Theorem 5.5. As subsets of P̃ , the strata P̃k are defined by the following equations and inequalities:

P̃0 : P0 = 0 and t2 = 0
P̃1 : P1 = P2 = P4 = 0 and (P0 > 0 or t2 > 0)
P̃2 : P1 > 0 or P2 > 0 or P4 6= 0

Proof. Let (a, A) ∈ T × t be given.
The pair (a, A) is invariant under the full S3-action iff so are a and A individually. According to Theorem 5.1 and

Lemma 5.2, this holds iff P0 = 0 and t2 = 0, respectively. Next, assume that (a, A) has nontrivial stabilizer. Then
there are two entries which coincide for a and A simultaneously. Then a A has a degenerate eigenvalue. It follows that
D(χa A) = 0 and, hence, P4 = 0. Conversely, assume P1 = P2 = P4 = 0. Then a and A both have coinciding entries.
Up to S3-action we can assume a = diag(α, α, α2), α ∈ U(1). Then A can be

diag(ix, ix,−2ix), diag(ix,−2ix, ix) or diag(−2ix, ix, ix), x ∈ R. (46)

If x = 0 or α3
= 1 then in all three cases (a, A) has nontrivial stabilizer. Hence, assume x 6= 0 and α3

6= 1. In the
second and the third case,

D(χa A) = (αx + 2αx)2(αx − α2x)2(2αx + α2x)2 = 9x6(2α3
− α3

− 1)2.

Taking the real part and replacing Im(α3)2 = 1 − Re(α3)2 yields

P4 = 72x6(Re(α3)− 1)2 = 0.

Hence, x = 0 or α3
= 1, in contradiction to the assumption. Therefore, A = diag(ix, ix,−2ix) and hence (a, A) has

nontrivial stabilizer. This yields the equations for P̃1. The inequalities for P̃1 and P̃2 are obvious. �
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5.5. Poisson structure

The brackets of the generating invariants c0, . . . , t3, taken in the Poisson algebra C∞(P), define a Poisson structure
on R8 by

{ f, g} :=

8∑
i, j=1

∂ f
∂xi

∂g
∂x j

{xi , x j }, (47)

where (x1, . . . , x8) = (c0, . . . , t3). This Poisson structure rules the dynamics on P̃; see the brief remark in Section 6.
The Poisson brackets in C∞(P) are defined by

{ f, g} = ω(X f , Xg), f, g ∈ C∞(G × g),

where the symplectic form ω is given by (9) and X f , Xg are the Hamiltonian vector fields associated with f and g,
respectively. They are defined pointwise by

ω(a,A)(X f , X) = −X ( f ), (48)

for all X ∈ T(a,A)(G × g) and (a, A) ∈ G × g. Here X ( f ) is the directional derivative of f along X . As in Section
3.3 we write the tangent vectors in the form

(X f )(a,A) = (R′
a B f , (A,C f )), X = (R′

a B, (A,C))

with B f ,C f , B,C ∈ g. Although it is not indicated by the notation, B f and C f depend on a and A, i.e., they are
g-valued functions on G × g. Using (9) and the invariance of the scalar product 〈·, ·〉 to rewrite the l.h.s. of (48), and
using the curve (exp(t B)a, A + tC) to represent X , (48) becomes

〈B f ,C〉 + 〈[B f , A] − C f , B〉 = −
d
dt

∣∣∣∣
t=0

f ((exp(t B)a, A + tC)), ∀ B,C ∈ g. (49)

Putting B = 0 yields B f , then putting C = 0 and replacing B f in the commutator yields C f . Having found the
Hamiltonian vector fields associated with the invariants this way, the Poisson brackets are then given pointwise
by

{ f, g}((a, A)) = 〈B f ,Cg〉 − 〈C f , Bg〉 − 〈A, [B f , Bg]〉. (50)

Since it suffices to compute the brackets on the level set J−1(0), we may always assume (a, A) ∈ J−1(0).
This simplifies the computations considerably. In particular, the commutators in (49) and (50) happen to
vanish.

Let us illustrate the calculation by the bracket {c1, d1}. For c1 and d1, (49) reads

〈Bc1 ,C〉 + 〈[Bc1 , A] − Cc1 , B〉 = −Im〈a,C〉 − Im〈a A, B〉

〈Bd1 ,C〉 + 〈[Bd1 , A] − Cd1 , B〉 = −Re〈a,C〉 − Re〈a A, B〉.

To express the r.h.s. in terms of scalar products of B and C with elements of g, let Π+ and Π− denote the projections
of M3(C) onto the traceless Hermitian and traceless anti-Hermitian matrices, respectively. That is,

Π±(D) =
1
2
(D ± DĎ)−

1
6

(
tr(D)± tr(D)

)
, D ∈ M3(C).

Both Π− and iΠ+ map M3(C) to g and for any D ∈ M3(C) and B ∈ g one has

Re〈D, B〉 = 〈Π−(D), B〉, Im〈D, B〉 = 〈iΠ+(D), B〉. (51)

In this way, we obtain the Hamiltonian vector fields of the invariants:



1210 E. Fischer et al. / Journal of Geometry and Physics 57 (2007) 1193–1213

Bc0 = 0, Cc0 = −Π−(a) = −
1
2
(a − aĎ)+

i
3

d0,

Bd0 = 0, Cd0 = iΠ+(a) =
i
2
(a + aĎ)−

i
3

c0,

Bc1 = −iΠ+(a) = −
i
2
(a + aĎ)+

i
3

c0, Cc1 = iΠ+(a A) =
i
2
(a − aĎ)A +

i
3

d1,

Bd1 = −Π−(a) = −
1
2
(a − aĎ)+

i
3

d0, Cd1 = Π−(a A) =
1
2
(a + aĎ)A −

i
3

c1,

Bc2 = −2Π−(a A) = −(a + aĎ)A +
2i
3

c1, Cc2 = Π−(a A2) =
1
2
(a − aĎ)A2

+
i
3

d2,

Bd2 = 2iΠ+(a A) = i(a − aĎ)A +
2i
3

d1, Cd2 = −iΠ+(a A2) = −
i
2
(a + aĎ)A2

−
i
3

c2,

Bt2 = −2A, Ct2 = 0,

Bt3 = 3iΠ+(A2) = 3iA2
+ it2, Ct3 = 0.

There hold the relations Bc1 = −Cd0 , Bd1 = −Cc0 , Bc2 = −2Cd1 , Bd2 = 2Cc1 . According to (50), e.g.,

{c1, d1} = 〈Bc1 ,Cd1〉 − 〈Cc1 , Bd1〉 = 〈−iΠ+(a),Cd1〉 − 〈iΠ+(a A), Bd1〉

= −Im〈a,Cd1〉 − Im〈a A, Bd1〉.

By replacing Cd1 and Bc1 using the above explicit expressions and rewriting the resulting scalar products in terms of
the invariants c0, . . . , t3 we finally arrive at the desired Poisson brackets:

{c0, d0} = 0, {c1, d1} =
1
3
(c0c1 + d0d1)

{t2, t3} = 0, {c2, d2} = −2t3 +
2
3
(c1c2 + d1d2)

{c0, c1} = −
2
3

c0d0 − d0, {d0, d1} =
2
3

c0d0 + d0

{c0, d1} =
1
2

c2
0 −

1
6

d2
0 − c0 −

3
2
, {d0, c1} =

1
6

c2
0 −

1
2

d2
0 − c0 +

3
2

{c0, c2} = −c0d1 −
1
3

d0c1 + d1, {d0, d2} =
1
3

c0d1 + d0c1 − d1

{c0, d2} = c0c1 −
1
3

d0d1 + c1, {d0, c2} =
1
3

c0c1 − d0d1 + c1

{c1, c2} = −
5
6

c0d2 −
1
2

d0c2 −
1
2

d0t2 +
1
2

d2 +
2
3

c1d1

{c1, d2} =
5
6

c0c2 −
1
2

d0d2 −
1
2

c0t2 −
3
2

t2 +
1
2

c2 +
2
3

d2
1

{d1, c2} =
1
2

c0c2 −
5
6

d0d2 −
1
2

c0t2 +
1
2

c2 +
3
2

t2 −
2
3

c2
1

{d1, d2} =
1
2

c0d2 +
5
6

d0c2 +
1
2

d0t2 −
1
2

d2 −
2
3

c1d1
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{c0, t2} = −2d1, {d0, t2} = 2c1

{c1, t2} = −2d2, {d1, t2} = 2c2

{c2, t2} = −t2d1 −
2
3

t3d0, {d2, t2} = t2c1 +
2
3

t3c0

{c0, t3} = t2d0 − 3d2, {d0, t3} = −t2c0 + 3c2

{c1, t3} = −
1
2

t2d1 − t3d0, {d1, t3} =
1
2

t2c1 + t3c0

{c2, t3} = −
1
2

t2d2 − t3d1, {d2, t3} =
1
2

t2c2 + t3c1. (52)

Remark 5.6. Another description of the reduced phase space in terms of invariants can be constructed as follows [7,
8]. The polar map (a, A) 7→ a exp(−iA) yields a diffeomorphism of T × t onto the complexification TC, which is
isomorphic to the direct product of two copies of the group of nonzero complex numbers. This diffeomorphism passes
to an isomorphism of stratified symplectic space from P onto TC/S3. The real invariants for the latter quotient are
the elementary bisymmetric functions on TC, obtained from the elementary symmetric functions by bilinearization
w.r.t. the holomorphic coordinates and their complex conjugates. This description is the starting point for stratified
Kähler quantization in [6,7]. It also has the great advantage that it directly generalizes to SU(n) and further to an
arbitrary compact Lie group. For classical dynamics, however, it has the drawback that the kinetic energy is not
polynomial in the generating invariants.

6. Towards classical dynamics (an outlook)

In this final section, we make some general remarks on the dynamics on P and X . A detailed study will be carried
out in a subsequent paper.

In terms of the symplectic covering χ of Section 4, the dynamics can be described as follows. Given a Hamiltonian
function H ∈ C∞(P), the lift χ∗ H is a Hamiltonian function on R4. Let the curve (x(t), p(t)) be a solution of the
Hamiltonian equations associated with χ∗ H ,

ṗ j = −
∂(χ∗ H)
∂x j , ẋ j

=
∂(χ∗ H)
∂p j

, j = 1, 2. (53)

To be a solution is a local property. Since the map ψ : R4
→ T × t is a local symplectomorphism, then

ψ((x(t), y(t))) is a solution of the Hamiltonian equations of λ∗ H on T × t. According to point 2 of Remark 3.1,
this curve stays inside (T × t)k for some k = 2, 1, 0. Hence, (x(t), p(t)) stays inside the corresponding R4

k and
χ((x(t), p(t))) = χk((x(t), p(t))) is a curve in Pk . Since χk is a local symplectomorphism by Theorem 4.2, then this
curve is a solution of the Hamiltonian equations of the Hamiltonian function H |Pk (restriction) on the stratum Pk .
This way, the Hamiltonian dynamics on P w.r.t. H is completely solved by the Hamiltonian dynamics w.r.t. χ∗ H on
R4. Furthermore, the trajectories in X are given by π ◦χ ((x(t), p(t))). Define χ̃ : R2

→ X to be the composition of
the covering ϕ : R2

→ T , see (16), with the natural projection T → X . Then π ◦ χ ((x(t), p(t))) = χ̃(x(t)). Hence,
for the discussion of the trajectories in X , it suffices to consider the trajectories x(t) in R2. An explicit realization of
the trajectories in X can be obtained by passing to R2 by means of the Hilbert map ρX ; see (26). One finds

ρX ◦ χ̃(x(t)) =

(
cos

(
1

√
6

x1(t)+
1

√
2

x2(t)
)

+ cos
(

1
√

6
x1(t)−

1
√

2
x2(t)

)
+ cos

(√
2
3

x1(t)

)
,

sin
(

1
√

6
x1(t)+

1
√

2
x2(t)

)
+ sin

(
1

√
6

x1(t)−
1

√
2

x2(t)
)

− sin

(√
2
3

x1(t)

))
.
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Fig. 6. Level diagram of the potential of the Hamiltonian (54). Dark regions mean low potential.

Now consider the Hamiltonian (2). One has

χ∗ H =
δ3

2
(p2

1 + p2
2)+

1
g2δ

(
3 − cos

(
x1
√

6
+

x2
√

2

)
− cos

(
x1
√

6
−

x2
√

2

)
− cos

(√
2
3

x1

))
. (54)

The Hamiltonian has the standard structure, consisting of a kinetic energy term and a potential term. The potential is
represented in Fig. 6. Its minimal value is 0; it is taken at the points(

3l

√
2
3
π, (3l + 2m)

√
2π

)
∈ R2

0, l,m ∈ Z.

The maximal value is 1
g2δ

9
2 , taken at(

(3l + 1)
2

√
3
π, (3l + 2m + 1)

√
2π
)
,

(
(3l + 2)

2
√

3
π, (3l + 2m + 2)

√
2π
)

∈ R2
0, l,m ∈ Z.

In addition, the potential has saddle points at(
3l

√
2
3
π, (3l + 2m + 1)

√
2π

)
∈ R2

1, l,m ∈ Z.

In the representation of R2 in Fig. 3, the minima are the points labelled by 0; they project to 1 ∈ X0. The maxima are
the points labelled by 1 and 2; they project to the other two central elements ei 2

3π1 and ei 4
3π1 ∈ X0. The saddle points

are situated in the middle between points labelled 1 and 2.
The Hamiltonian equations associated with H are

ṗ1 = −
1

g2δ

√
2
3

(
sin
(

1
√

6
x1
)

cos
(

1
√

2
x2
)

+ sin

(√
2
3

x1

))
,

ṗ2 = −
1

g2δ

√
2 cos

(
1

√
6

x1
)

sin
(

1
√

2
x2
)
,

ẋ j
= δ3 p j , j = 1, 2.

(55)

Combining them, we obtain

ẍ1
+
δ2

g2

√
2
3

(
sin
(

1
√

6
x1
)

cos
(

1
√

2
x2
)

+ sin

(√
2
3

x1

))
= 0,
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ẍ2
+
δ2

g2

√
2 cos

(
1

√
6

x1
)

sin
(

1
√

2
x2
)

= 0. (56)

As mentioned above, this system of equations will be studied in detail in a subsequent paper.
Next, we comment on the discussion of the dynamics in terms of the invariants of Section 5. For a given

Hamiltonian function H̃ ∈ C∞(R8), the dynamics takes place on R8 and is ruled by the Poisson structure defined by
the brackets of the coordinates (52). That is, the equations of motion are given by

ẋ j = {H̃ , x j }, (x1, . . . , x8) = (c0, . . . , t3). (57)

By construction of the Poisson structure, P̃ is invariant under the flow of H̃ for any H̃ ∈ C∞(R8). In terms of the
invariants, the Hamiltonian (2) reads

H̃ =
δ3

2
t2 +

1
g2δ

(3 − c0).

The second term corresponds to the potential term in (54). Its level lines in X̃ are just straight lines parallel to the
d0-axis; cf. Fig. 4. The minimum is at the corner (c0, d0) = (3, 0), the maxima are at the corners (c0, d0) =

(− 3
2 ,±

√
3 3

2 ), the saddle point is at the boundary point (c0, d0) = (−1, 0).
The corresponding equations of motion (57) yield a highly coupled system, which will not be reproduced here. At

first sight it does not seem to be easier to handle than the equations of motion in terms of the symplectic covering (56).
It will be a future task to study and unravel this system.
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